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Aero-elastic vibration is investigated in the case of a shallow shell of revolution or a cylindrical panel, which respectively occupy 
a part of a thin cylindrical body or a thin profile, in a high-velocity supersonic gas flow at zero angle of attack. Particular attention 
is paid to finding the pressure interaction and this problem is solved within the framework of the law of plane sections in boundary- 
layer theory. An expression is obtained which refines and supplements the well-known formula of "piston" theory. A linearized 
formulation of the problem of the panel flutter of a shallow shell is presented. Using the example of a plate located on one of 
the sides of a wedge, it is shown that the formula of "piston" theory is complemented with a term which has the meaning of a 
compressive force in the plane of the plate. It is shown that, when account is taken of this term, there is a reduction in the critical 
flow velocity. © 1999 Elsevier Science Ltd. All rights reserved. 

In the overwhelming majority of cases investigations of panel flutter are carried out using the formulae 
of "piston" theory for the pressure of the interaction between the vibrating panel and the gas flow. The 
drawbacks of such an approach in the general case have been noted earlier [1], and it has been proposed 
that the interaction pressure should be determined in the context of the law of plane sections [2, 3] 
from the solution of a perturbation problem (the source of these perturbations being the bending of 
the panel) when no account is taken of the reflection of the perturbations from the shock wave. Final 
relations were obtained in [1] after making quite considerable simplifications, and a further analysis of 
these equations is necessary. 

1. D E R I V A T I O N  O F  T H E  B A S I C  R E L A T I O N 5  

Consider a thin, axially symmetric body or profile in a high-velocity supersonic gas flow at a zero 
angle of attack. The velocity vector of the flow is directed along the body axis (orthogonal to the edge 
of the profile). The origin of the orthogonal system of coordinates coincides with the body vertex (with 
the edge of the profile), the x axis is directed along the velocity vector, the y axis is directed along the 
edge of the profile and the z axis is such that the system of coordinates is a right-hand system (in the 
case of a body, the direction of the y axis is arbitrary). 

We will initially assume that the deformed part of the surface of the body or the profile occupies a 
domain Ix1, xz] and we shall be concerned with the axially symmetric flexures of a shell of revolution 
or the cylindrical bending of a shallow cylindrical shell. Suppose that, in the undeformed state, the 
equation of the generatrix is 

zl = kx + (p(x) 

where I qf fx ) / (kx )  [ ,< 1 is a body of revolution which differs only slightly from a cone or a profile which 
differs only slightly from a wedge. In the deformed part, we shall then have z = kx + (p(x) - ~(x, t), 
where ~ = w cos (n, z) and n is the outward normal to the surface zv To the same accuracy to which 
the law of plane sections holds, we may put ~ -= w and, hence, finally 

z = kx  + ¢p(x) - w(x ,  t) (1.1) 

By the law of plane sections, the gas state in the domain between the body and the shock wave (SW) 
is determined from the solution of the problem of unsteady plane flow in the plane x = x)~t which is 
caused by the expansion of a piston in accordance with the law 
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Z( t ) = ku xt + ¢p(v xt ) - W(V xt, t) (1.2) 

We will construct the solution of this problem by expansion with respect to a small parameter, the 
ratio of the gas densities upstream and downstream of the SW [4] 

p° _ y - l [ l  ~ 2a~ ] -  ~a(D) 
p* y + 1 (y - 1)D 2 

where ao is the velocity of sound in the free stream and D is the propagation velocity of the SW. If e is 
properly assumed to be the expansion parameter, the smallness requirement (pO/p,)2 ,~ 1 implies the 
condition a(D) - 1, which will henceforth be used. 

We will now estimate the value of the flow velocity Vx which guarantee the above inequality. It follows 
from the conclusion p/p* ~ 1 that a2/D 2 ,~ 1 and, as a consequence of the condition I (~0 - w)/(kx) I ~ 1 
for the velocity of  the SW, the estimate D - ~h~x, ~ -~ 1 holds and therefore, finally, we must have 
(~km) 2 I> 1. 

We now introduce Lagrangian variables: the time t and the coordinate z so that dz = p°r~-ldr, where 
p0 is the initial density, Ix = 2 in the case of cylindrical waves and Ix = 1 in the case of plane waves. The 
required functions are the distance of the particles from the axis or the plane of symmetry g = g(t, z), 
the pressure p = p(t,  z)  and the density p = p(t, z). 

The equations of motion, conservation of mass and energy have the form 

~2g ~p. ~g=  1 ~ (~_v )=  0 (1.3) 
Ot 2 =-glt-I~"Z' ()Z pglt-l; ~t 

Putting 

g =Cjo +F, gl + .... p=po+~-,pl + .... p = I?,-Ipo + pl +... 

and substituting into (1.3), we obtain a system for the function of the zeroth approximation which is 
easily integrated 

q0 = g0(t), Po = P ( t ) -  Zglo -~ oug° oat 2 ' Oo(Z) 

Here, g0(t), P(t), O0(z) are as yet arbitrary functions. 
For the functions of the first approximation, we have 

O2q01 z 2 , -  
Pl = ( I x - l ) ~ - Y - ~ I  dz + PI(t) 

O I  

Pi y Pl =Ol(Z) 
Po Po 

(1.4) 

Here g~, pT, 01 are arbitrary functions and the quantity z* will be determined later. 
We assume that ~( t )  determines the law of motion of the SW and, then, we shall have z = z* = 

p°g~(t)/lx in it. On substituting the expansions adopted above into the conditions in the SW, we arrive 
at the following relations: when z = z* = p0g~/ix, we must have 

_ p _ _ L  ° 
qo =Go(t), Po- ~'+I o Po = a(qo ) 

ql =0,  Pl = - P 0 ,  Pl = 0  

(1.5) 

Here  p0 is the pressure in the unperturbed flow and a dot over a function indicates a derivative with 
respect to time. 

From (1.5), we now determine the arbitrary functions occurring in the solution and introduce the 
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variable x by the formula z = p0g~(x)/Ix. The functions required in the subsequent treatment take the 
form 

2P 0 • 2 I 0 -. 
p0 =777 o 

1 t 
c~, = -qo-~_ I ! a(~o(~))V(t ,~o ~-' (~)gJo +2/v (~)d~ -= ~,(t, x) 

Pt=-(~t-l)~!q,(t,~)q~o-'(~)qo(~)d~+~! ~ 2 J  qo~-' (~)~jo (~)ar~ - P ° (1.6) 

r ,, ~. ]]-I/v 
• } 

Thus, the solution is expressed in terms of a law of motion of the SW %(~) which is as yet unknown. 
We find the equation for determining it from the condition on the piston: when x = 0 (z - 0), the equality 
(if we confine ourselves in the solution to terms which are linear with respect to e) ~(t) = g0(t) + 
~ l ( t ,  O) = z ( t )  must be satisfied which, by using the notation ~l(t, 0) = - F ( t ,  ~; ~(t) ,  ~(~)}, we write 
in the form 

t o ( t )  = eF{ ... } + z( t)  (1.7) 

The function z ( t )  is given by expression (1.2). 
The functional F is extremely non-linear and an analytical solution of Eq. (1.7) is therefore practically 

impossible. However, the existence of a small parameter indicates the possibility of obtaining an 
approximate solution by the method of successive approximations 

g(0°)(t) = Z(t), g(0n+t)(t) = 8F{t,~;gton)(t),g(on)(~)} + Z(t) (1.8) 

Without considering the general case, we shall merely point out one consideration in favour of the 
possible convergence of the sequence (1.8). In the case when t o = w = 0, Eq. (1.7) has an exact solution 
g-0(t) = Dt ,  in which D is found from the quadratic equation D = eDa(D)/Ix  + u, u =/cox. The sequence 
(1.8) leads to an inertial process for determining D 

D(O) = u, D (n+l) = u + eJ)(n)a(Dn)/ix 

which converges when a d u  < [(y + 1)(IX + e)/2] 1/2 [5] and, in particular, when Ix = 1, whence it follows 
that kyM > 1 which is in agreement with the estimate obtained above. 

In the linear theory of thin shallow shells it is assumed that 

(to/ut) 2 '~ 1, (w/tp) 2 "~ 1 

and it may therefore be expected that the sequence (1.8) will converge subject to a condition that differs 
only slightly in a certain sense from the condition presented above. 

We shall make some estimates beforehand. Suppose I is the characteristic dimension of the shell in 
the flow direction. Then, t 1 = l[1~ x will be the characteristic time for the flow around the shell. The 
characteristic time of the vibration of the shell is t2 = 12/(ch), where c = (E/~) 1/2 E and ~ are Young's 
modulus and the density of the shell material and h is its thickness; hence 

tilt2 = ch/(vx 12 ~- 1 

Next 

since (w/to) 2 ¢~ 1, the estimates 

(p l u - to l(hu)<~ 1, / ¢2 - t o / ( k 0 <  ]; 

will hold all the more. 
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We will now calculate the first approximation in (1.8). We obtain 

q(01) (t) = eF{t,~;z(t), z(~) + z(t) (1.9) 

We expand all expressions of the type 1 + (to - w)/(ut) and similar expressions, which are contained 
in gl(t, x) and F { . . . }  to differing powers, in series and carry out the necessary operations. We finally 
write equality (1.9) in a form which only contains linear terms with respect to to - w = W and the 
corresponding derivatives 

~(0l)(t) = u, + Euta(u)+(l +~a(u) tW( t ) -  2E a(u)1~'(t)t-~.E~.2..a(u)~l(t)t2 + 

+ a(u) T - I  u 2 

It is necessary to assume that t0(x) - to(VxX), w(x) = W(VxX, t) in all the formulae. 
We will now calculate the second approximation in (1.8), retaininjz only linear terms with respect to 

e of the type eW, eW and analogous terms. It can be shown that ~z) will differ from ~l) solely in the 
fact that the substitutions 

ult=(u+~ua(u)l~t)t---)u2t=(u+eula(ul)lp.)t, a(u)--)a(uO 

have to be made in (1.10). 
A similar structure of the solution is obviously preserved in any approximation. The iterative process 

for u,, as was established above, converges to D and we therefore finally obtain 

qo (t) = Dt + (1 + ea(D) / kt)W - 2E a(D)Wt - ~ a(D)Wt 2 + 
117 z~t T 

2e ~-. t 
+ - - ( ( 1 - y ) a ( D ) +  T)t [ x"-lw(x)ax (1.11) 

T o 

From (1.6), we determine ql(t, x) 

a(D) D 1 "c" ~+2a(D) ¢ct 1 - - ~  - 2 ( 1 - T ) a ( D ) + T ) I  z~t-'l~'('c)dx+ ql(t,'c) 

2 -~-+  (1.12) 

The problem is, in fact, practically solved sincepl can be calculated in terms of @ and ql using simple 
quadratures. 

2. A S H A L L O W  S H E L L  AS PART OF T H E  S U R F A C E  OF T H E  P R O F I L E  

Substituting expressions (1.11) and (1.12) into (1.6), with IX = 1, we find the pressure on the piston 

pl~=o=(Po+ept)~=o =2p°D2- ep° + 4 p ° D B " ( I + 2 E -  ca(D))+ 
T+ l  T + l  

L ~'t~' + oJ 

The dots denote terms which are of a higher order of smallness compared with the preceding term and 
we therefore omit them. 

On passing to the problem of the flow around a profile in an Eulerian system of coordinates associated 
with a fixed body, as was assumed above, we take account of the fact that 
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t = xlu x, I/V = aWlOt+VxOW/ax 

Substituting this into (2.3), we obtain an expression for the pressure drop on the side surface of the 
profile 

Ap=p-p°  =y+l (P°D2-Tp° ) -  ( I+2E-Ea(D) +Vx--~x - 

p°Dx(, lEa(D))(i)2w ~ O2W V2 ~2W~ 

4p ° Dux ~xx b2tP -I )' +------7 (1 + 2e - ea(D)) + p°DVx x ax 2 (2.2) 

We shall drop the assumption regarding cylindrical bending and assume that expression (2.2) holds 
in the general case when ~ = ~(x, y), w = w(x, y, t). In order to describe the motions of the shell we 
shall use the simplest version of the linear theory [ 6 ]  

O2w]'O2~ ( 02w'~ ~2d~ 2 02w ~)2typ <-Ap-[)h a2w 

D O = 1 2 ( 1 _ v 2 ) ,  

Here, k=, k s are the principal curvatures, v is Poisson's ratio of the shell material and • is the stress 
function. It is necessary to supplement system (2.3) with the appropriate boundary conditions. 

In (2.3), we now isolate the ground (static) state Wo(X, y), Oo(X, y) and put w = w0 + w*, • = ~0 + 
O*, where "small" perturbations of the ground state are denoted by an asterisk. Substituting into (2.3) 
we obtain a linearized system in small perturbations 

~2(I3" 32(~ * . * 
DoA2w *= h(kx ay--"T+ ky Ox----~)+ L(w , Oo)+ L(wo,dP ) -  

4p°D(1 (-~t ~w*q p°Dx(, i 12a(D)~x 

7-;i +<'x 

¢ ~  2W* - O2W* 2 ~ 2 W * )  ~ o2W* 

x(--~--+ ~x a--7~x +vx ax 2 ) - p h  ~t 2 

2 * 2 * ( a w  . a w ~  e+" 

a2u a~ ~2u a2v a2u ~nzv 
L(u,v ) = ax 2 3y 2 -~ 2 - -  Oy2 Ox 2 OxOy axOy 

The term L(wo, ~*) will most likely turn out to have a second-order effect on the solution w*, ~* and 
it can be neglected: a final conclusion can be drawn after carrying out actual calculations. 

We will now assume that the flow velocity vector makes an angle 0 with the positive direction of the 
x axis so that 

V=v n o ={v x,vy}, n o ={cos0,sin0} 

Expression (2.2) then becomes 

- • grad w - AP=~-~(P°D-?p°)4p°D(I+21~-ea(D))(~t + u n ° ~  ) 
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f p  ° ° x r -  - .g adw+   _ - ~ t - ~  - ~ - 2 + ~ v ~ ' n  ° 

4p°Du p°Dx ( 12a(D)]x 
+ .(1 + 2e-ea(D))n ° .gradg+ / 1 -  

~,+1 vx k "~0'+ 1)) 

ax--- r + axay ' 

In conclusion, we will give some estimates of the terms on the right-hand side of (2.2). The "combined 
mass" (o°DJu~)(1 - 12ca(D))/(7(7 + 1)) is comparable with the mass per unit,length of the shell. Since 
the second factor is of the order of unity and x - l, we have 

~hu~/(p°Dt) - p h v x / ( p ° u x  tg a/) 

and, subject to the usual limits on the change in the parameters, this ratio will be of the order of 10 to 
10 3, that is, the term with the "combined mass" can be neglected in the first approximation. The charac- 
teristic time of the vibration of the shell is t z = 12/(ch) and the ratio 

(2~ x O2w I atOx) I(u 2x32w Iax 2) - chl(u x l) 

will therefore be of the order of 10 -1 to 10 -2. Consequently, the main contribution to the "dynamic" 
load on the shell is made by the terms 

Ap, =-4p°D(l+2~-ea(D))~-~-+ox~)-p°Duxx(1 --12a(D)')~2w (2.4, 
v+l  t ot 

The first of these is the traditional term of "piston" theory, but with a coefficient which depends on 
the flow velocity in a rather complex way, while the second term has the meaning of a compressive normal 
force in the middle surface of the shell and, obviously, may have a substantial effect on the nature of 
the vibrations in the critical flutter velocity. 

3. THE F L U T T E R  OF A PLATE 

We will now consider the problem of a the flutter of a plate which occupies a domain G with a 
piecewise-smooth contour F in the (x, y) plane. Since the problem is linear, the vibration of the plate 
will be described by the equation 

DOA2W = APdi n -h 02w - P  0t2 (3.1) 

and the boundary conditions 

x,y~F:w=O, M(w) = 0 (3.2) 

where M is an operator which is well known in the theory of plates. 
Suppose l is the characteristic size of the domain G and to = 12 ~lph/Do. We will now introduce the 

dimensionless coordinatesx/l,y/l and time t/to, while retaining the previous notation for them, and then 
make the substitution w = ¥(x, y)e ~. Then, taking (3.2) and expression (2.4) into account, we reduce 
problem (3.1) to the eigenvalue problem 

A 2 w + A 2 M 2 x 3 2 ~ +  AI M2 ~x = XW, ~,=-t02 -AoMt.o 
3x ~ 

(3.3) 

xy e F, ¥ = 0, M(W) = 0 (3.4) 

Here 
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8Y 3 ~ - v 2 )  p°cl2 tgl3(l+2E-ea*(tg~)) 
A° = ~-+ i Eao h2 

A1 48~/(1 - v 2 ) p°13 
= ) '+1 Eh 3 tgl3(1 + 2 e -  ea*(tg~3)) 

A2 = 12~/(1- v2)P°13 t g ~ (1 -~  12a*(tg~)) 
Eh 3 ~, T(~' + 1) ) 

a*(tg ~) = 1 + 2/[(y - 1)M 2 tg 213] 

The "slope of the shock wave" tg 13 is determined from the equation 

tg I~ = tg 0t + ea'(tg 13)tg 13 

In the complex plane, ~., the domain of stable vibration lies inside the parabola 

A~M 2 Re ~, = rim X) 2 

Consequently, the problem involves determining the eigenvalue which first falls within the parabola 
of stability. The velocity corresponding to this will be the critical flutter velocity. 

The solution of Eq. (3.3) as an equation with variable coefficients is possible using approximate and 
numerical methods. In some of the numerical methods we note that there is a numerical-analytic 
algorithm without saturation [7], which has been specially developed for solving problems of  this kind. 

Remark. In the traditional formulation when A 2 = 0, the necessary condition for the motions Re ~. > 0 to be 
stable is always satisfied [8]. In the case under consideration, since the operator x is negative-definite, this condition 
must be guaranteed xO2~/a~c 2 by means of additional constraints which are imposed on the parameters of the problem. 

In the simple example of a rectangular hinge-supported plate, we obtain some results of a qualitative nature. 
Suppose that one of the sides of the plate is parallel to the edge of a wedge and is located at a distance x0 
(dimensionless) from it, and that the domain G{0 ~< x ~< 1/130, 0 ~< y ~< 1}. In the chosen system of coordinates, 
problem (3.3), (3.4) is written in the form 

a2~/ 2 a~' 
A2~+ A2M2(xo + X)~x2 + AIM "~x =~'W 

1 a2~ = 0 
x = 0 ,  x=~--0: V = 0 '  ~ (3.5) 

y=O, y=l: ql=O, ~ 2 ~ - 0  ~y2- 

It is well known [7, 9] that, when 130 - 1, the two-term approximation of the Bubnov-Galerkin method in this 
simplest formulation of the problem when A 2 = 0 gives a result for the critical flutter velocity which is of acceptable 
accuracy. We shall make use of it and put 

C = (C I sinl~ogX + (72 sin 213o~.x)sin ~y 

After the usual procedure based on (3.5), we obtain a homogeneous system of linear algebraic equations in C1, 
C2 and we represent the roots of the characteristic equation of this system in the form 

~LI, 2 = ~.' +i~." (3.6) 

B l = 1 - 8A 2/(3A l ), B 2 = I + 2A 2/(3A I ) 
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From this, we obtain an equation for determining the critical value of the number M 

AoM2~,, _ E2" = 0 (3.7) 

We now determine M0 from the condition that ~." = 0, which corresponds to the critical flutter velocity, taking 
aerodynamic damping (A0 = 0) into account; from (3.6) we have 

2130 .) AI J 
(3.8) 

These simple estimates show that, when a* - 1, the expression in the square brackets is greater than unity. In 
the case of"piston" theoryAz = 0, B1 = B2 = 1 and it follows from (3.8) that 

M~ = 3//492[l~(2+5~2)/A 1 ]~ > M 0 

Hence, "piston theory" gives an estimate of the critical flutter velocity that is too high using the approximate 
criterion Im ~. = 0. A qualitative analysis (when 130 = 1 and x0 = 0) shows that the exact criterion (3.7) also leads 
to the inequality Mcr < M~r, where M~r corresponds to the case when A2 = 0. 

The role of the last term in expression (2.5) for/~dadin increases in the ease of plates elongated in the flow direction. 
In this case, it is necessary to make use of one of the versions of the geometrically non-linear theory of plates such 

2 as, for example, the Karman equations [6]. Suppose w0 is a dimensionless flexure (with respect to Do/(Eh )) and 
~0 is a dimensionless stress function (with respect to Do~h), which are obtained from the Karman system under 
"static" loading 

~ + l  ( 1 2 a ( D )  ") 02 w o 4p°Dvx (1 + 2E - ea(D))~x° - p°Dv xx 1 - E V(V + l ) J ~ x - ~  A~t = (P°D-  •P0) ~'+1 

and we put w = w0 + w*, q~ = % + (p*. 
In the system for "small" perturbations w*, ~*, we discard the equation 

A20 * = -L(wo, w*)/2 

and, in the remaining equation, we take no account of the effect of O* and w*. Then, when expression (2.3) is 
taken into account, we obtain the maximum simplified linearized formulation of the problem and, substituting w* 
= ~(x,y)etot into it, we arrive at the eigenvalue problem 

A2~g + A2 M2 x ~ 2 ~ +  A1 M2 ~ g  _ L ( ¢ o ,  ~1/) = ~,W 
~x" dx 

x , y ~ F : ~ = 0 ,  M0g) = 0 

which can be solved using a numerical-analytic algorithm without saturation. 
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